Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Parkinsons Dis ; 14(2): 245-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427500

RESUMO

Background: Increased activity across corticostriatal glutamatergic synapses may contribute to L-DOPA-induced dyskinesia in Parkinson's disease. Given the weak efficacy and side-effect profile of amantadine, alternative strategies to reduce glutamate transmission are being investigated. Metabotropic glutamate receptor 4 (mGlu4) is a promising target since its activation would reduce glutamate release. Objective: We hypothesized that two mGlu4 positive allosteric modulators, Lu AF21934 ((1 S,2 R)-N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide) and ADX88178 (5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine), would provide relief in rat and primate models of L-DOPA-induced dyskinesia. Methods: The ability of Lu AF21934 or ADX88178 to reverse pre-established dyskinesia was examined in L-DOPA-primed 6-hydroxydopamine-lesioned rats expressing abnormal involuntary movements (AIMs) or in 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets expressing L-DOPA-induced dyskinesia. Additionally, the ability of Lu AF21934 to prevent the development of de novo L-DOPA-induced AIMs was explored in the 6-hydroxydopamine-lesioned rats. Results: Neither Lu AF21934 (10 or 30 mg/kg p.o.) nor ADX88178 (10 or 30 mg/kg p.o.) reduced pre-established AIMs in 6-hydroxydopamine-lesioned rats. Similarly, in L-DOPA-primed common marmosets, no reduction in established dyskinesia was observed with Lu AF21934 (3 or 10 mg/kg p.o.). Conversely, amantadine significantly reduced (>40%) the expression of dyskinesia in both models. Lu AF21934 also failed to suppress the development of AIMs in 6-hydroxydopamine-lesioned rats. Conclusions: This study found no benefit of mGlu4 positive allosteric modulators in tackling L-DOPA-induced dyskinesia. These findings are concordant with the recent failure of foliglurax in phase II clinical trials supporting the predictive validity of these pre-clinical dyskinesia models, while raising further doubt on the anti-dyskinetic potential of mGlu4 positive allosteric modulators.


Assuntos
Anilidas , Ácidos Cicloexanocarboxílicos , Discinesia Induzida por Medicamentos , Doença de Parkinson , Pirimidinas , Receptores de Glutamato Metabotrópico , Tiazóis , Ratos , Animais , Levodopa/uso terapêutico , Callithrix , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/metabolismo , Antiparkinsonianos/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico , Glutamatos/uso terapêutico , Modelos Animais de Doenças
2.
Fluids Barriers CNS ; 21(1): 11, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273301

RESUMO

INTRO: Reliable estimates of drug uptake from blood to brain parenchyma are crucial in CNS drug discovery and development. While in vivo Kp,uu,brain estimates are the gold standard for investigating brain drug disposition, animal usage is a limitation to high throughput application. This study investigates an in vitro model using P-gp expressing MDCKII-MDR1 cells for predicting in vivo brain drug penetration. METHODS: In vitro equilibrium distribution studies were conducted in apical and basolateral solutions with high protein content to estimate Kp,brain and Kp,uu,brain values. The correlation between in vitro and in vivo Kp,brain values for a set of compounds was examined. RESULTS: We observed a good correlation between in vitro and in vivo Kp,brain values (R2 = 0.69, Slope: 1.6), indicating that the in vitro model could predict in vivo drug brain penetration. The 'unilateral (Uni-L)' in vitro setup correctly classified 5 out of 5 unrestricted compounds and 3 out of 5 restricted compounds. Possible reasons for the observed disparities for some compounds have been discussed, such as difference in transport areas between in vitro and in vivo settings and effect of pH changes. CONCLUSION: The in vitro assay setup developed in this study holds promise for predicting in vivo drug brain penetration in CNS drug discovery. The correlation between in vitro and in vivo Kp,brain values, underscores that the model may have potential for early-stage screening. With minor refinements, this in vitro approach could reduce the reliance on in vivo experiments, accelerating the pace of CNS drug discovery and promoting a more ethical research approach.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transporte Biológico
3.
Proc Natl Acad Sci U S A ; 120(41): e2304089120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792512

RESUMO

The serotonin transporter (SERT) tightly regulates synaptic serotonin levels and has been the primary target of antidepressants. Binding of inhibitors to the allosteric site of human SERT (hSERT) impedes the dissociation of antidepressants bound at the central site and may enhance the efficacy of such antidepressants to potentially reduce their dosage and side effects. Here, we report the identification of a series of high-affinity allosteric inhibitors of hSERT in a unique scaffold, with the lead compound, Lu AF88273 (3-(1-(2-(1H-indol-3-yl)ethyl)piperidin-4-yl)-6-chloro-1H-indole), having 2.1 nM allosteric potency in inhibiting imipramine dissociation. In addition, we find that Lu AF88273 also inhibits serotonin transport in a noncompetitive manner. The binding pose of Lu AF88273 in the allosteric site of hSERT is determined with extensive molecular dynamics simulations and rigorous absolute binding free energy perturbation (FEP) calculations, which show that a part of the compound occupies a dynamically formed small cavity. The predicted binding location and pose are validated by site-directed mutagenesis and can explain much of the structure-activity relationship of these inhibitors using the relative binding FEP calculations. Together, our findings provide a promising lead compound and the structural basis for the development of allosteric drugs targeting hSERT. Further, they demonstrate that the divergent allosteric sites of neurotransmitter transporters can be selectively targeted.


Assuntos
Citalopram , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Antidepressivos/farmacologia , Citalopram/química , Citalopram/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
4.
Eur J Pharm Sci ; 190: 106554, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543065

RESUMO

The application of Göttingen minipigs for non-rodent pharmacokinetics (PK) and drug safety testing has seen a dramatic increase in recent years. The aim of this study was to determine the total and unbound brain-to-plasma ratios (Kp,brain and Kp,uu,brain) for a diverse set of reference compounds in female Göttingen minipigs and compare these with Kp,uu,brain values from other species to assess the suitability of Göttingen minipigs as a model for CNS drug safety testing and brain PK in clinical translation. The reference set consisted of 17 compounds with varying physico-chemical properties and included known human P-glycoprotein (P-gp) substrates. The results of the study showed, that minipig Kp,brain and Kp,uu,brain values for the tested compounds were in the range 0.03-86 and 0.02-2.4 (n = 3-4) respectively. The Kp,uu,brain values were comparable between minipig and rat for a large proportion of the compounds (71% within 2-fold, n = 17). Comparisons of brain penetration across several species for a subset of reference compounds revealed that minipig values were quite similar to those of rat, dog, monkey and human. The study highlighted that the largest Kp,uu,brain species differences were observed for compounds classified as transporter substrates (e.g. cimetidine, risperidone, Way-100635 and altanserin). In conclusion these brain penetration data add substantially to the available literature on PK and drug disposition for minipigs and support use of Göttingen minipig as a non-rodent drug safety model for CNS drug candidates and as a brain PK model for clinical translation.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Ratos , Suínos , Feminino , Humanos , Cães , Porco Miniatura , Transporte Biológico , Proteínas de Membrana Transportadoras , Fármacos do Sistema Nervoso Central
5.
J Pharm Sci ; 112(8): 2297-2300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893963

RESUMO

Hepatocyte cocultures like HepatoPac have become more frequently used for the assessment of the intrinsic clearance of slowly metabolised drugs during drug discovery due to a superiority in enzymatic activity over time compared to liver microsomal fractions and suspended primary hepatocytes. However, the relatively high cost and practical limitations prevent several quality control compounds to be included in studies and the activities of many important metabolic enzymes are consequently often not monitored. In this study, we have evaluated the possibility for a cocktail approach of quality control compounds in the human HepatoPac system to ensure adequate activity of the major metabolising enzymes. Five reference compounds were selected based on their known metabolic substrate profile in order to capture major CYP and non-CYP metabolic pathways in the incubation cocktail. The intrinsic clearance of the reference compounds when incubated as singlets or in a cocktail was compared and no considerable difference was observed. We show here that a cocktail approach of quality control compounds allows for easy and efficient evaluation of the metabolic competency of the hepatic coculture system over an extended incubation period.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Humanos , Técnicas de Cocultura , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Cinética
6.
J Am Soc Mass Spectrom ; 34(3): 441-451, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719168

RESUMO

Hyperphosphorylated tau protein is well-known to be involved in the formation of neurofibrillary tangles and the progression of age-related neurodegenerative diseases (tauopathies), including Alzheimer's Disease (AD). Tau protein phosphorylated at serine-396 (pS396-tau) is often linked to disease progression, and we therefore developed an analytical method to measure pS396-tau in cerebrospinal fluid (CSF) in humans and animal models of AD. In the S396-region, multiple phosphorylation sites are present, causing structural complexity and sensitivity challenges for conventional bottom-up mass spectrometry approaches. Here, we present an indirect LC-MS/MS method for quantification of pS396-tau. We take advantage of the reproducible miscleavage caused by S396 being preceded by a lysine (K395) and the proteolytic enzyme trypsin not cleaving when the following amino acid is phosphorylated. Therefore, treatment with trypsin discriminates between the forms of tau with and without phosphorylation at S396 and pS396-tau can be quantified as the difference between total S396-tau and nonphosphorylated S396-tau. To qualify the method, it was successfully applied for quantification of pS396-tau in human CSF from healthy controls and patients with Mild Cognitive Impairment and AD. In addition, the method was applied for rTg4510 mice where a clear dose dependent decrease in pS396-tau was observed in CSF following intravenous administration of a monoclonal antibody (Lu AF87908, hC10.2) targeting the tau epitope containing pS396. Finally, a formal validation of the method was conducted. In conclusion, this sensitive LC-MS/MS-based method for measurement of pS396-tau in CSF allows for quantitative translational biomarker applications for tauopathies including investigations of potential drug induced effects.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Fosforilação , Serina/metabolismo , Espectrometria de Massas em Tandem , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tripsina/metabolismo
7.
Xenobiotica ; 52(6): 591-607, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36000364

RESUMO

The use of the Göttingen minipig as an animal model for drug safety testing and prediction of human pharmacokinetics (PK) continues to gain momentum in pharmaceutical research and development. The aim of this study was to evaluate in vitro to in vivo extrapolation (IVIVE) methodologies for prediction of hepatic, metabolic clearance (CLhep,met) in Göttingen minipig, using a comprehensive set of compounds.In vivo clearance was determined in Göttingen minipig by intravenous cassette dosing and hepatocyte intrinsic clearance, plasma protein binding and non-specific incubation binding were determined in vitro. Prediction of CLhep,met was performed by IVIVE using conventional and adapted formats of the well-stirred liver model.The best prediction of in vivo CLhep,met from scaled in vitro kinetic data was achieved using an empirical correction factor based on a 'regression offset' of the IVIV relationship.In summary, these results expand the in vitro and in vivo PK knowledge in Göttingen minipig. We show regression corrected IVIVE provides superior prediction of in vivo CLhep,met in minipig offering a practical, unified scaling approach to address systematic under-predictions. Finally, we propose a reference set for researchers to establish their own 'lab-specific' regression correction for IVIVE in minipig.


Assuntos
Hepatócitos , Modelos Biológicos , Animais , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/metabolismo , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo , Farmacocinética , Suínos , Porco Miniatura
8.
J Med Chem ; 65(9): 6656-6676, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500061

RESUMO

The Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is a brain-relevant kinase involved in long-term potentiation and synaptic plasticity. We have recently pinpointed the CaMKIIα hub domain as the long-sought-after high-affinity target of γ-hydroxybutyrate ligands substantiated with a high-resolution cocrystal of 5-hydroxydiclofenac (3). Herein, we employed in silico approaches to rationalize and guide the synthesis and pharmacological characterization of a new series of analogues circumventing chemical stability problems associated with 3. The oxygen-bridged analogue 4d showed mid-nanomolar affinity and notable ligand-induced stabilization effects toward the CaMKIIα hub oligomer. Importantly, 4d displayed superior chemical and metabolic stability over 3 by showing excellent chemical stability in phosphate-buffered saline and high resistance to form reactive intermediates and subsequent sulfur conjugates. Altogether, our study highlights 4d as a new CaMKIIα hub high-affinity ligand with enhanced pharmacokinetic properties, representing a powerful tool compound for allosteric regulation of kinase activity with subtype specificity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Diclofenaco , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diclofenaco/análogos & derivados , Ligantes , Potenciação de Longa Duração
9.
Pharm Res ; 39(7): 1321-1341, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411506

RESUMO

PURPOSE: More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS: To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS: From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.


Assuntos
Barreira Hematoencefálica , Fármacos do Sistema Nervoso Central , Descoberta de Drogas , Encéfalo , Descoberta de Drogas/métodos , Humanos
10.
Drug Metab Bioanal Lett ; 15(1): 12-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196975

RESUMO

BACKGROUND AND OBJECTIVE: Compound X is a drug candidate for the treatment of neurodegenerative diseases. Its brain distribution was evaluated as part of the lead identification and optimization activities undertaken in early drug discovery. METHODS: The brain distribution of compound X was studied in genetic transporter knockout rodent models, in vivo models with a chemical inhibitor, and in vitro transporter cell systems. RESULTS: Compound X was found to be a substrate for human Breast Cancer-Resistance Protein (BCRP) in vitro (efflux ratio 8.1) and rodent Bcrp in vivo (Kp, uuKO/Kp, uuWT = 0.15/0.057 = 2.7, p< 0.05) but not a substrate for human P-glycoprotein (P-gp) in vitro (efflux ratio 1.0) nor rodent P-gp in vivo (Kp, uuKO/Kp, uuWT = 0.056/ 0.051 = 1.1, p> 0.05). When both transporters were knocked out in vivo, Kp, uu increased to 0.51±0.02. A similar pattern observed across compounds with related chemistry corroborating the structure-activity relationship. CONCLUSION: While in vitro assays showed compound X to be a substrate for human BCRP and not P-gp, in vivo studies indicated a synergistic effect between rodent efflux transporters. However, this only accounted for ~50% of restricted BBB-transport, suggesting involvement of other efflux transporters. Considering Kp, uu as a key criterion for assessing the technical quality of CNS candidates before progression into clinical development, it is important to identify relevant screening assays for a better understanding of low Kp, uu and brain distribution in pre-clinical models for translation to humans.


Assuntos
Barreira Hematoencefálica , Roedores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Descoberta de Drogas , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias , Roedores/metabolismo
11.
Clin Pharmacol Ther ; 111(4): 774-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201613

RESUMO

In central nervous system drug discovery programs, early development of new chemical entities (NCEs) requires a multidisciplinary strategy and a translational approach to obtain proof of distribution, proof of occupancy, and proof of function in specific brain circuits. Positron emission tomography (PET) provides a way to assess in vivo the brain distribution of NCEs and their binding to the target of interest, provided that radiolabeling of the NCE is possible or that a suitable radioligand is available. PET is therefore a key tool for early phases of drug discovery programs. This review will summarize the main applications of PET in early drug development and discuss the usefulness of PET microdosing studies performed with direct labelling of the NCE and PET occupancy studies. The purpose of this review is also to propose an alignment of the nomenclatures used by drug metabolism and pharmacokinetic scientists and PET imaging scientists to indicate key pharmacokinetic parameters and to provide guidance in the performance and interpretation of PET studies.


Assuntos
Desenvolvimento de Medicamentos , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Nervoso Central , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas , Humanos , Tomografia por Emissão de Pósitrons/métodos
12.
J Med Chem ; 64(24): 17795-17812, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908407

RESUMO

The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4ßδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.


Assuntos
Adjuvantes Imunológicos/farmacologia , Alcanos/farmacologia , Antagonistas GABAérgicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Adjuvantes Imunológicos/química , Alcanos/química , Proliferação de Células/efeitos dos fármacos , Antagonistas GABAérgicos/química , Humanos , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
13.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822784

RESUMO

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Receptor Muscarínico M1/agonistas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Inibidores da Colinesterase/farmacologia , Cricetulus , Cristalização , Modelos Animais de Doenças , Cães , Donepezila/farmacologia , Eletroencefalografia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Dinâmica Molecular , Degeneração Neural/complicações , Degeneração Neural/patologia , Primatas , Ratos , Receptor Muscarínico M1/química , Transdução de Sinais , Homologia Estrutural de Proteína
14.
Epilepsia ; 62(7): 1729-1743, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018186

RESUMO

OBJECTIVE: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. METHODS: We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. RESULTS: Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4-7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. SIGNIFICANCE: These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs.


Assuntos
Anticonvulsivantes/uso terapêutico , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Ivabradina/uso terapêutico , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacologia , Córtex Cerebral , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina/farmacologia , Masculino , Microinjeções , Rede Nervosa , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Convulsões/genética , Córtex Somatossensorial , Núcleos Ventrais do Tálamo
15.
Behav Brain Res ; 405: 113167, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577882

RESUMO

BACKGROUND: Bipolar disorder is a life-threatening disorder linked to dopamine transporter (DAT) polymorphisms, with reduced DAT levels seen in positron emission tomography and postmortem brains. AIMS: The purpose of this study was to examine the effects of approved antipsychotics on DAT dysfunction-mediated mania behavior in mice. METHODS: DAT knockdown mice received either D2-family receptor antagonist risperidone or asenapine and mania-related behaviors were assessed in the clinically-relevant behavioral pattern monitor to assess spontaneous exploration. RESULTS: Chronic risperidone did not reverse mania-like behavior in DAT knockdown mice. Chronic asenapine reduced mania behavior but this effect was more pronounced in wild-type littermates than in DAT knockdown mice. CONCLUSION: Taken together, these findings suggest that while acute antipsychotic treatment may be beneficial in management of bipolar mania, more targeted therapeutics may be necessary for long-term treatment. Specific investigation into DAT-targeting drugs could improve future treatment of bipolar mania.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Transtorno Bipolar/tratamento farmacológico , Antagonistas dos Receptores de Dopamina D2/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Mania/tratamento farmacológico , Animais , Antipsicóticos/administração & dosagem , Dibenzocicloeptenos/farmacologia , Modelos Animais de Doenças , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Feminino , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Risperidona/farmacologia
16.
Pharmaceutics ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105895

RESUMO

Drug distribution in the brain is generally associated with an affinity for fatty brain tissues and therefore known to be species- and concentration-independent. We report here the effect of target affinity on brain tissue binding for 10 small molecules designed to inhibit brain heat shock protein 90 (HSP90), a widespread protein whose expression is 1-2% of total cytosolic proteins in eucaryotes. Our results show that increasing the test item concentrations from 0.3 to 100 µM increased the unbound fraction 32-fold for the most potent molecules, with no change for the inactive one (1.1 fold change). Saturation of HSP90 led to normal concentration-independent brain tissue binding. In vivo pharmacokinetics performed in rats showed that the overall volume of distribution of compounds is correlated with their affinity for HSP90. The in vitro binding and in vivo pharmacokinetics (PK) performed in rats showed that small molecule HSP90 inhibitors followed the principle of target-mediated drug disposition. We demonstrate that assessing unbound fractions in brain homogenate was subject to HSP90 target interference; this may challenge the process of linking systemic-free drug concentrations to central nervous system unbound concentrations necessary to establish the proper pharmacokinetics/pharmacodynamics (PK/PD) relation needed for human dose prediction.

17.
Sci Rep ; 10(1): 10078, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572053

RESUMO

Brain GABAΑ receptors are ionotropic receptors belonging to the class of Cys-loop receptors and are important drug targets for the treatment of anxiety and sleep disorders. By screening a compound library (2,112 compounds) at recombinant human α4ß1δ GABAΑ receptors heterologously expressed in a HEK cell line, we identified a scaffold of spirocyclic compounds with nanomolar antagonist activity at GABAΑ receptors. The initial screening hit 2027 (IC50 of 1.03 µM) was used for analogue search resulting in 018 (IC50 of 0.088 µM). 018 was most potent at α3,4,5-subunit containing receptors, thus showing preference for forebrain-expressed extrasynaptic receptors. Schild analysis of 018 at recombinant human α4ß1δ receptors and displacement of [3H]muscimol binding in rat cortical homogenate independently confirmed a competitive profile. The antagonist profile of 018 was further validated by whole-cell patch-clamp electrophysiology, where kinetic studies revealed a slow dissociation rate and a shallow hill slope was observed. Membrane permeability studies showed that 2027 and 018 do not cross membranes, thus making the compounds less attractive for studying central GABAΑ receptors effects, but conversely more attractive as tool compounds in relation to emerging peripheral GABAΑ receptor-mediated effects of GABA e.g. in the immune system.


Assuntos
Antagonistas de Receptores de GABA-A/isolamento & purificação , Antagonistas de Receptores de GABA-A/farmacologia , Receptores de GABA-A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/classificação , Células HEK293 , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ácido gama-Aminobutírico/metabolismo
18.
Neuropsychopharmacology ; 44(10): 1706-1713, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31216565

RESUMO

Vortioxetine is a multimodal antidepressant approved for treatment of major depressive disorder. Preclinical studies have demonstrated that the mechanism of action of vortioxetine might be different from selective serotonin reuptake inhibitors (SSRIs), including larger serotonin (5-HT) release and direct modulation of several 5-HT receptors. In the current positron emission tomography (PET) study, we evaluated the mechanism of action of vortioxetine by comparing its effect to the SSRI citalopram on the binding of [11C]AZ10419369 to the 5-HT1B receptor in the nonhuman primate brain. Initially, the 5-HT transporter (5-HTT) binding of vortioxetine was determined by [11C]MADAM PET measurements before and after administration of vortioxetine (0.1-3.0 mg/kg) and data were used to confirm clinically relevant dosing in subsequent PET measurements with [11C]AZ10419369. The 5-HT1B receptor binding was significantly decreased after 0.3 mg/kg of citalopram in the dorsal raphe nucleus (5%), as well as after 0.3 mg/kg of vortioxetine in six brain regions (~25%) or 1.0 mg/kg of vortioxetine in all 12 examined regions (~48%). Moreover, there was no effect of 1.0 mg/kg of vortioxetine on the binding of [11C]Cimbi-36 to the 5-HT2A receptor, which has comparable sensitivity to 5-HT release as [11C]AZ10419369 binding. In conclusion, at clinically relevant doses, vortioxetine induced larger reductions in [11C]AZ10419369 binding than citalopram. These observations suggest that vortioxetine binds to the 5-HT1B receptor at clinically relevant doses. Future studies are warranted to evaluate the role of the 5-HT1B receptor in the therapeutic effects of vortioxetine and as a potential target for the development of novel antidepressant drugs.


Assuntos
Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Vortioxetina/farmacologia , Animais , Benzopiranos , Benzilaminas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Citalopram/metabolismo , Núcleo Dorsal da Rafe/diagnóstico por imagem , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Feminino , Macaca mulatta , Morfolinas , Fenetilaminas , Piperazinas , Tomografia por Emissão de Pósitrons , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Vortioxetina/metabolismo
19.
Int J Pharm ; 543(1-2): 352-360, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29635055

RESUMO

The aim of the present work was to investigate the ability of nonionic surfactants to increase the oral absorption of the P-glycoprotein substrate etoposide in vitro and in vivo. Intestinal absorption was investigated by studying bidirectional permeability of etoposide across filter-grown Caco-2 and MDCKII MDR1 cell monolayers. The oral absorption of etoposide was investigated in wild type (WT) and mdr1a deficient (KO) Sprague-Dawley rats. In cell cultures, polysorbate 20 (PS20) decreased P-glycoprotein mediated efflux of etoposide. When PS20 and etoposide were co-administered to WT rats, the oral absorption of etoposide increased significantly in the presence of 5 and 25% (v/v) PS20. However, in KO rats, the exposure of etoposide after oral co-administration with 5% PS20 was similar to control. Unexpectedly, co-administration of etoposide with 25% PS20 significantly reduced the absorption fraction of etoposide in mdr1a KO rats. In vitro dialysis studies performed on PS20-containing etoposide solutions suggested that the reduced bioavailability may be due to etoposide retention in PS20 micelles and/or through increased viscosity. In conclusion, PS20 increases oral bioavailability of etoposide through inhibition of P-glycoprotein. However, the use of the excipient may be challenged by etoposide retention at higher concentrations.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Etoposídeo/administração & dosagem , Excipientes/administração & dosagem , Polissorbatos/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Cães , Etoposídeo/sangue , Etoposídeo/química , Etoposídeo/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Humanos , Células Madin Darby de Rim Canino , Masculino , Polissorbatos/química , Polissorbatos/farmacocinética , Ratos Sprague-Dawley , Ratos Transgênicos
20.
Mol Pharmacol ; 93(6): 645-656, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29695609

RESUMO

The realization of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702 (7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one), described previously as a potent M1 receptor allosteric agonist, which showed procognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702, together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. Although they impart beneficial effects on learning and memory, we conclude that these properties are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data support the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses.


Assuntos
Acetilcolina/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptores Muscarínicos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzimidazóis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Células CHO , Linhagem Celular , Ensaios Clínicos como Assunto , Cricetinae , Cricetulus , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...